基于FPGA和DSP的音频采集卡的实现
[10-10 20:36:41] 来源:http://www.88dzw.com 电子制作 阅读:8599次
文章摘要:摘要: 本文介绍了一种基于FPGA和DSP的多通道音频采集卡的设计和实现方案,该卡能够工作在多种采样率下并可以使用DSP中不同的音频算法用于满足不同场合,并通过PC104接口将处理后的数据上传至主机。采集卡已应用在船舶航行数据纪录仪VDR中。 关键词: FPGA;DSP;PC104;多采样率;音频数据压缩;航行数据记录仪VDR 0 引言一个多通道数字音频系统必须考虑两个问题:采集到声音的质量问题和最终数字化后的音频存储的问题。由奈奎斯特定理知,如果要保证把采集到的音频信号完全无失真的恢复出来,采样率就必须至少是需采集音频信号频宽的2倍。由于现在大多数音频CODEC采用了Delta-Sigma
基于FPGA和DSP的音频采集卡的实现,标签:电子小制作,http://www.88dzw.com摘要: 本文介绍了一种基于FPGA和DSP的多通道音频采集卡的设计和实现方案,该卡能够工作在多种采样率下并可以使用DSP中不同的音频算法用于满足不同场合,并通过PC104接口将处理后的数据上传至主机。采集卡已应用在船舶航行数据纪录仪VDR中。
关键词: FPGA;DSP;PC104;多采样率;音频数据压缩;航行数据记录仪VDR
0 引言
一个多通道数字音频系统必须考虑两个问题:采集到声音的质量问题和最终数字化后的音频存储的问题。由奈奎斯特定理知,如果要保证把采集到的音频信号完全无失真的恢复出来,采样率就必须至少是需采集音频信号频宽的2倍。由于现在大多数音频CODEC采用了Delta-Sigma Modulator,在保证采样率合适的情况下,声音质量一般是可以满足要求的。在船舶航行记录仪中,音频的频宽是150hz-6000hz,因此我们可以采用16khz的采样率和16位的量化位数。
按照这样的采样率,单路的音频码率为256kbps,24小时音频的数据量就高达2.76GB。为了减少最终存储器的存储空间,需要对原始的音频数据进行压缩处理。一般来说有损压缩比无损压缩的压缩比要高的多,但是同时会造成音质的下降。系统设计时应该进行适当的平衡。
本文设计的基于FPGA和DSP的多通道音频采集卡,采用Altera公司的Cyclone系列FPGA简化逻辑控制和提高硬件速度;采用TI公司的TMS320VC 5416实现音频压缩算法,在满足了音频性能指标的同时减少了最终的音频数据量,满足了系统的设计要求。
1 系统硬件结构
1.1主要芯片选型
(1) 音频CODEC芯片PCM3008
在音频CODEC芯片的选型上采用了Texas Instruments公司的PCM3008。这款音频CODEC芯片采用了16bit的△-∑ADC和DAC。其中立体声ADC具有单端电压输入,内置抗混叠滤波器。优异的性能还表现在其ADC的总谐波失真加噪声低至-84dB,信噪比高达88dB,动态范围至88dB,其内置的1/64× Decimation数字滤波器使得信号在通带内波动仅有±0.05dB,阻带衰减可至-65dB。低压工作,低功耗。其采样率为8khz-48khz可选。数据传输为同步串口方式,操作方便。
(2)FPGA芯片EP1C6Q240
FPGA采用Altera公司的Cyclone系列的 EP1C6Q240实现各器件的接口控制。Cyclone系列的FPGA是Altera公司针对低成本高性能的应用而推出的,具有很高的性价比。EP1C6Q240的最大可用IO数量185;片内92Kbit的RAM可以配为单双口RAM,ROM,FIFO等各式存储模块;两个高精度锁相环,方便地为片内的各个模块提供所需时钟;5980个LE(逻辑单元),为接口电路的实现提供丰富的逻辑资源。Altera公司的QuartusⅡ集成开发环境简便易用,内含大量IP核,其内嵌的Signal TapⅡ逻辑分析仪更是为用户的调试提供了很大方便。
(3)DSP芯片TMS320VC5416
DSP芯片采用TI公司的TMS320VC5416。TMS320VC5416是TI公司5000系列中高性能低功耗的定点DSP,它建立在C54x DSP核基础上。TMS320VC5416是一款16位定点高性能数字信号处理器, 其主要特性有: 速率最高达160MIPS; 3 条16位数据存储器总线和1条程序存储器总线; 1 个40位桶形移位器和2 个40位累加器; 1 个17×17乘法器和1 个40位专用加法器; 最大8M ×16位的扩展寻址空间, 内置128 k ×16位的RAM 和16 k ×16位的ROM; 3 个多通道缓冲串口(McBSP);其丰富的外设和强大的运算能力,使得TMS320VC5416可以进行实时的多路音频处理。在压缩的实现上,使用通用DSP芯片TMS320VC5416与使用专用的硬件压缩芯片相比,不仅可以节约成本,还可以方便地实现系统的升级和灵活的配置。
图1
1.2 系统设计思路
硬件结构设计如图1所示。多路音频信号首先通过调理部分,进入音频CODEC PCM3008,通过BCK,LRCK,DOUT三根信号线将音频数据送入DSP的 RAM内,DSP会按照一定的顺序将一帧音频数据整理好放在一个数据缓存里,并对其中的每路音频数据依次调用音频压缩算法,在下一帧音频数据到达该缓存区前将数据通过FPGA中的SRAM控制器发送到SRAM中,并告知PC104主机采集过程完毕。PC104主机通过FPGA内的PC104接口模块,将缓存SRAM中的数据读取出来。
《基于FPGA和DSP的音频采集卡的实现》相关文章
- › 基于FPGA的1553B通信模块的设计
- › 基于FPGA的工控领域监控系统设计
- › 基于FPGA的嵌入式系统USB接口设计
- › 基于FPGA的NAND Flash ECC校验
- › 基于FPGA的实时中值滤波器硬件实现
- › 一种基于FPGA控制全彩大屏幕显示的设计
- 在百度中搜索相关文章:基于FPGA和DSP的音频采集卡的实现
- 在谷歌中搜索相关文章:基于FPGA和DSP的音频采集卡的实现
- 在soso中搜索相关文章:基于FPGA和DSP的音频采集卡的实现
- 在搜狗中搜索相关文章:基于FPGA和DSP的音频采集卡的实现