Microcontrollers Improve Power

[09-13 17:03:33]   来源:http://www.88dzw.com  控制技术   阅读:8436

文章摘要:Another method of improving Stop mode efficiency is to use an interrupt to exit instead of reset. This allows the processor to resume operation immediately with the instruction following the setting of the STOP bit, instead of having to restart from the reset vector. This eliminates the need to dete

Microcontrollers Improve Power,标签:计算机控制技术,工厂电气控制技术,http://www.88dzw.com

Another method of improving Stop mode efficiency is to use an interrupt to exit instead of reset. This allows the processor to resume operation immediately with the instruction following the setting of the STOP bit, instead of having to restart from the reset vector. This eliminates the need to determine the cause of the reset and allows the processor to begin performing useful work in less time.

Idle Mode

Idle mode is the second clock management mode used in original 8051 architecture. This mode halts operation of the CPU, but keeps the on-chip, general-purpose timers operational. In a power-sensitive application, these timers are used to periodically wake the device to perform a task or to poll if a task should be performed.

Because standard 8051 timers are limited to 16 bits, this allows a maximum timeout period of 31ms at a clock rate of 16MHz. If longer periods are needed, multiple timer overflows will be required. This will consume additional power because the device must resume full operation occasionally to increment a counter but not perform any useful work.

For longer periods, use an internal timer with a longer period. Some 8051 derivatives incorporate a watchdog timer, which can also be used to awaken the device. Watchdog timers can be programmed for long time-out periods, on the order of 226 clock cycles. This would allow a maximum timeout period of 4.2s at 16MHz. As an example, assume an application wishes to awake from a low power state every 3s to perform a task. If the internal timers are used to time the operation, the device would have to exit Idle mode 96 times without doing useful work. If a watchdog timer with a long timeout is used, the device would only exit Idle mode once, perform the task, and return to the low-power state.

One other option is to use a microcontroller with a real-time clock (RTC). The DS87C530 high-speed microcontroller incorporates an RTC capable of generating an alarm period as long as 24 hours. The internal interrupt generated by this alarm can cause the device to exit Idle or Stop mode. Using an RTC to exit Stop mode is the most efficient way to suspend device operation for long periods of time.

Power Management Modes

Although Idle mode reduces power consumption by halting program execution, the internal timers continue to operate at the external clock frequency. This consumes a considerable amount of power, considering the timers are basically operating in a "standby" capacity.

A better approach is to reduce the clock rate of the entire device. This can be done with an internal clock divisor, which divides the external clock frequency before it enters the CPU. Such a scheme has been implemented in the DS87C520 High-Speed Microcontroller. This device employs two clock divisor functions: Power Management Mode 1, which divides the input clock source by 64, and Power Management Mode 2, which divides the input clock source by 1024. These modes are enabled by setting the appropriate bits in a Special Function Register.

Figure 7 shows a comparison of the clock divisor and clock control modes on the DS87C520 High-Speed Microcontroller. The figure contrasts the current consumption in full speed (divide by 4), Power Management Mode 1 (divide by 64), Power Management Mode 2 (divide by 1024), Idle mode, and Stop Mode. As expected, Stop mode draws the least current, because all internal clocking is halted. One interesting result of this comparison is that the two power management modes draw less current than Idle mode. This not only allows the device to conserve power, but permits it to function continuously at a low level of operation. In the traditional 8051 architecture, performing any type of CPU activity was "all or nothing." A device was forced to operate constantly at the highest performance level, even if high performance was only required for short periods. This unnecessarily increased power consumption. The use of power management modes (PMM) allows the device (and system) to match its power consumption to the level of performance needed.

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9]  下一页


Tag:控制技术计算机控制技术,工厂电气控制技术控制技术