自动测试设备的预算-Automatic Test Equip

[09-13 17:05:13]   来源:http://www.88dzw.com  控制技术   阅读:8238

文章摘要:Abstract: The complexity of electronic-device testing varies widely, ranging from the simplest type—manual testing—to the most complex—large-scale automatic test equipment (ATE). In between simple manual testing and large-scale ATE lies the low-budget and medium-scale testing that is the focus of th

自动测试设备的预算-Automatic Test Equip,标签:计算机控制技术,工厂电气控制技术,http://www.88dzw.com
Abstract: The complexity of electronic-device testing varies widely, ranging from the simplest type—manual testing—to the most complex—large-scale automatic test equipment (ATE). In between simple manual testing and large-scale ATE lies the low-budget and medium-scale testing that is the focus of this application note. These types of test systems are usually dedicated to testing a specific component or circuit, under the control of a PC. A PC's parallel or serial port provides a convenient connection between the PC and small, cost-sensitive applications. The IEEE-488 bus can conveniently connect the PC to multiple test instruments, which can not be accomplished by a parallel or serial port. Although it increases the price of the test system, the capability it offers for connecting more than one instrument at a time to the PC justifies the extra cost. When designing the hardware for a test instrument, using the proper design technique from the beginning eliminates or minimizes difficult-to-solve problems that could occur as the design progresses. Separating digital and analog grounds, using optoisolators, identifying high-impedance nodes, spending time on component placement, accounting for voltage drops in power and ground traces, and other techniques all increase the chances of a successful design.

The complexity of electronic-device testing varies widely, ranging from the simplest type—manual testing—to the most complex—large-scale automatic test equipment (ATE). Manual testing typically requires DVMs, oscilloscopes, and other equipment set up in a particular configuration. When the device type to be tested changes, you usually need to change the test hardware. ATE testers, on the other hand, provide tremendous flexibility, allowing many different types of devices to be tested without changes to the test hardware. Software changes reconfigure this type of tester to accommodate different types of devices. In addition to the versatility that this equipment provides, it enables electronic testing of great complexity, although at a price: These testers can cost upwards of a million dollars.

In between simple manual testing and large-scale ATE lies the low-budget and medium-scale testing that is the focus of this article. These types of test systems are usually dedicated to testing a specific component or circuit, under the control of a personal computer. Compared to large-scale ATE, they lack in flexibility and test complexity. However, the price paid for this equipment usually justifies its use; it is dramatically cheaper than large-scale testers. See Figure 1.

Figure 1. Test systems range in complexity from (a) labor-intensive manual testing to (d) fully automatic test equipment. This article focuses on low-budget and medium-scale test systems (b and c).
Figure 1. Test systems range in complexity from (a) labor-intensive manual testing to (d) fully automatic test equipment. This article focuses on low-budget and medium-scale test systems (b and c).

This article discusses various topics that apply to low-budget and medium-scale testing, including the different interfaces used to connect PCs to test equipment, as well as hardware and software design.

[1] [2] [3] [4] [5] [6] [7] [8] [9]  下一页


Tag:控制技术计算机控制技术,工厂电气控制技术控制技术