音频系统应用中的“POP”噪声以其常用解决方法
[10-10 20:36:41] 来源:http://www.88dzw.com 电子制作 阅读:8220次
文章摘要:图11:LM4838 低音增强特性,(a)典型的应用原理图;(b)不同Cbs值的频率响应。 从以上讨论可知,芯片上电、掉电时出现的“POP”噪声是比较难解决的。事实上也的确如此,没有Vdd可能意味着整个系统同时失去电源,MCU不能工作,I/O状态失去控制,也无法完成图12所示的操作。但是,仍有一些方法可以解决这个难题,例如使用外部的静音电路,此时上面提到的“减小‘POP’声,就是要避免直流瞬变”的思路仍然可用。因此这个静音电路应该具有如下功能:(1)上电时,在Vdd开始上升之前,输出一个稳定的有效信号(假设为高电平)来驱动MUTE和STB管脚;(2)掉电时,在Vdd开始下降之前,输
音频系统应用中的“POP”噪声以其常用解决方法,标签:电子小制作,http://www.88dzw.com图11:LM4838 低音增强特性,(a)典型的应用原理图;(b)不同Cbs值的频率响应。
从以上讨论可知,芯片上电、掉电时出现的“POP”噪声是比较难解决的。事实上也的确如此,没有Vdd可能意味着整个系统同时失去电源,MCU不能工作,I/O状态失去控制,也无法完成图12所示的操作。但是,仍有一些方法可以解决这个难题,例如使用外部的静音电路,此时上面提到的“减小‘POP’声,就是要避免直流瞬变”的思路仍然可用。因此这个静音电路应该具有如下功能:(1)上电时,在Vdd开始上升之前,输出一个稳定的有效信号(假设为高电平)来驱动MUTE和STB管脚;(2)掉电时,在Vdd开始下降之前,输出一个稳定的有效信号(假设为高电平)来驱动MUTE和STB管脚。
图13所示的电路基本可以满足以上两个要求。当+12V上电时,电荷通过D1到达Q1的e极,也通过R1、R2到达Q1的b极。由于电荷需要对C2充电,所以Q1的b极在上电刚开始的一段时间trise内比e极低一个阈值电压,此时Q1导通,在c极输出一段时间的高电平信号MUTE_OUT1。图14为外部静音电路的仿真结果。
图12:上电、掉电时MUTE与STB的正确时序。
当+12V突然掉电时,C2通过D2迅速放电,此时D2正向导通,将R1短路并形成放电回路。因为C2容值小,储存电荷少,所以放电时间常数ttail
实际的应用系统一般会有多组电源同时存在,由于电压不同、负载的轻重不同以及所并联的去耦电容不同,每组电源的上升、下降时间会有差异。这种现实的差异正是图13电路的工作前提:将上电、掉电时间短的电源放到+12V处,将上升相对较慢的电源作为音频Vdd。这一点需要特别强调。
下面介绍图13电路的参数优化方法。图15显示了外部静音电路中A、B、C三点的电压变化情况。在上电、掉电回路有一个公用的器件C2,C2的取值要合适,目的是实现ttail
图13:外部的静音电路。
RFOR=Φr/(IFOR+IS) (5)
其中,Φr=kT/q=26mV@T=300K,它是一个与温度有关的电压常数;IS为饱和电流,是一个与结面积有关的常数。从公式(5)可看出,正向电阻随正向电流的增大而减小。这里使用系统中较高的电压+12V作为静音电路的电源,是为了增加二极管D1的放电电流。在C2充电的过程中,有两个电流对其充电,其中一个电流来自+12V并经过R1,其上升时间(从10%到90%)为:
trise=2.2*Rcharge*C (6)
将R1、C2带入公式(6)计算出上升时间为10.34秒。但实际上的上升时间并没有这么长,其原因是还有另一个来自Q1的b极的充电电流。Q1导通时,B点的电压等于A点电压减去发射结压降,大约为10.6V,集电结也正偏,管子处于饱和状态,因此Q1的b极流出的电流通过R2对C2充电,加速了C点电压的上升。
《音频系统应用中的“POP”噪声以其常用解决方法》相关文章
- › 基于USB HOST音频解码器的数字音频系统设计
- › 多声道数字音频系统的编码及应用
- › 基于S3C2410和UDAl34l的嵌入式音频系统设计
- › 基于MAX97001设计的单片音频系统方案
- › 高集成度环绕声编解码器降低音频系统设计门槛
- › 利用实时Java设计数字音频系统
- 在百度中搜索相关文章:音频系统应用中的“POP”噪声以其常用解决方法
- 在谷歌中搜索相关文章:音频系统应用中的“POP”噪声以其常用解决方法
- 在soso中搜索相关文章:音频系统应用中的“POP”噪声以其常用解决方法
- 在搜狗中搜索相关文章:音频系统应用中的“POP”噪声以其常用解决方法