基于小波变换和自相关函数的基音频率检测算法

[10-10 20:42:03]   来源:http://www.88dzw.com  电子制作   阅读:8968

文章摘要:www.88dzw.com从图5(c)可以看到,用自相关函数法在A,B,C三帧判断错误,使基音频率轨迹估计值偏离了正常的轨迹(通常偏离到正常值的2倍或1/2倍),这就是基音轨迹的“野点”。图5(d)是文中提出的算法的计算结果,很好地去除了这些野点,提高了检测的准确率。5 结 语 自相关函数法是一种简单,计算速度快的基音频率估计算法。但该方法易受噪音和共振峰的影响,为了提高自相关函数法检测基音频率的准确性,在此使用小波变换对语音信号进行预处理,一定程度上消除了高频噪音和共振峰的影响,能够准确反映语音段中基音频率的变化,得到比较真实的基音频率曲线。 传统的小波变换的基频检测,通过对语音

基于小波变换和自相关函数的基音频率检测算法,标签:电子小制作,http://www.88dzw.com

www.88dzw.com

从图5(c)可以看到,用自相关函数法在A,B,C三帧判断错误,使基音频率轨迹估计值偏离了正常的轨迹(通常偏离到正常值的2倍或1/2倍),这就是基音轨迹的“野点”。图5(d)是文中提出的算法的计算结果,很好地去除了这些野点,提高了检测的准确率。

5 结 语
    自相关函数法是一种简单,计算速度快的基音频率估计算法。但该方法易受噪音和共振峰的影响,为了提高自相关函数法检测基音频率的准确性,在此使用小波变换对语音信号进行预处理,一定程度上消除了高频噪音和共振峰的影响,能够准确反映语音段中基音频率的变化,得到比较真实的基音频率曲线。
    传统的小波变换的基频检测,通过对语音信号进行3个连续尺度上的小波变换,比较相邻两尺度下的极值点位置是否一致,来确定声门闭合时刻,进而求得基音频率。由于需要进行多次小波变换及极值搜索和判定,计算量大,实时性不好。这里只需要在固定的尺度下做1次小波变换,然后用自相关函数法检测基音频率,计算量小,实时性较好。

www.88dzw.com

3 算法流程图
   
算法过程如下:
    (1)采集语音信号。人的语音信号频率都在6 kHz以内,根据Nyqtfist采样定理,fs=11 025 Hz。把采集得到的语音信号记为X;
    (2)基音频率变化范围大,从老年男性的50 Hz到儿童和女性的450 Hz。因此使用小波变换进行滤波时,要把50~500 Hz的语音信号加强,把高于500 Hz的语音信号减弱,以去除共振峰和高频噪音的影响;
    (3)同一个人在不同情态下发音的基音周期也不同,加之基音周期还受单词发音音调的影响,因此基音检测实际上是估计短时语音的平均周期。采用L点的矩形窗来截取信号,进行短时分析,一般取窗口的长度为36 ms,帧重叠18 ms;
    (4)利用自相关函数估计第i帧语音信号的基音
周期fpi。若fpi的频率范围超出了[60 Hz,500 Hz],则判断该帧为清音帧,声带不振动,fpi,置为O Hz。

    算法流程图如图4所示:

4 实 验

    首先通过一个真实的语音数据来说明第3节算法的有效性,然后将其与传统的自相关函数法的结果进行比较。
    在图5中,图5(a)为作者(男性)读“马到成功”的语音信号波形,fs=1l 025 Hz,用普通麦克风在自然环境下录制,时长为2 s。选择db4小波基,对原始语音信号进行二进小波变换,取小波变换后第三层的低频部分信号,该低频信号如图5(b)所示。用帧长为36 ms的矩形窗把图5(a)中原始信号分成165帧,并用自相关函数估计每一帧的基音频率,基音频率的变化曲线如图5(c)所示。同样地把图5(b)中经小波变换后所得的低频语音信号分成165帧,然后用自相关函数估计每一帧的基音频率,基音频率的变化曲线如图5(d)所示。

上一页  [1] [2] 


Tag:电子制作电子小制作维修教程知识 - 电子制作