基于单片机及CPLD的B超检测工装设计
[10-10 20:38:44] 来源:http://www.88dzw.com 单片机学习 阅读:8472次
文章摘要:图1 发射、接收工装设计电路中主控部分原理图 发射和接收工装都需要把发射波形或接收波形经过控制后,通过转接线JP3~JP7及JP10和需要检测的实际B超板相接,来检测B超板(图1~图3中未给出JP3~JP7及JP10连接线的插座)。发射工装设计 图1中,U1(7400)与非门电路和12MHz晶振组成晶体振荡器,给EPM7064的全局时钟端43脚提供时钟信号。EPM7064的21脚和25脚输出周期20ms、脉宽330ns、带660ns死区时间的2个方向相反的脉冲信号,经同向放大器U21(74F07)驱动后得到IPA和INB,加到双刀双掷开关S1上(在图2中,S1此时需拨到发射位置)
基于单片机及CPLD的B超检测工装设计,标签:单片机开发,单片机原理,http://www.88dzw.com图1 发射、接收工装设计电路中主控部分原理图
发射和接收工装都需要把发射波形或接收波形经过控制后,通过转接线JP3~JP7及JP10和需要检测的实际B超板相接,来检测B超板(图1~图3中未给出JP3~JP7及JP10连接线的插座)。
发射工装设计
图1中,U1(7400)与非门电路和12MHz晶振组成晶体振荡器,给EPM7064的全局时钟端43脚提供时钟信号。EPM7064的21脚和25脚输出周期20ms、脉宽330ns、带660ns死区时间的2个方向相反的脉冲信号,经同向放大器U21(74F07)驱动后得到IPA和INB,加到双刀双掷开关S1上(在图2中,S1此时需拨到发射位置)。IPA经S1加到U3、U4、U5这3个高压开关HV20220上,3个高压开关的所有输出都接在了一起,而且这3个高压开关接成菊花瓣形式,即下一个开关的数据输入端DIN,接前一个开关的数据输出端DOUT。在微处理器AT89S52的控制下,给出SDATA1, SCLK1, SLD1,RESET1切换电路的串行控制信号,使3个高压开关的输入端依次和自己的输出端闭合,如U3的7脚和8脚,此时,IPA信号送给了IP001。但需注意的是,在同一时间,3个高压开关的24个通道只有一个是可以闭合的,其余的都断开。INB的过程和IPA的过程完全一样,在IP001得到IPA信号的同时,IN001也得到了INB信号。IP001~IP024依次得到IPA信号,IN001~IN024则依次得到INB信号。IP001~IP024和IN001~IN024通过转接头JP3 、JP4 送到B超的AFE9624板上。在AFE9624板上经过MD1211驱动,驱动内置场效应管芯片C6320,得到工装发出的两个带死区时间、方向相反并经MD1211放大后合成的波形。再经过AFE9624板上的12个高压开关HV20220切换,根据继电器切换选择探头A或探头B输出。在微处理器AT89S52的控制下,给继电器组开通或关断信号SRELAY:SRELAY=0时,探头A开;SRELAY=1时,探头B开通。同时又发出SDATA2,SCLK2,SLD2,RESET2串行控制信号,通过JP10转接线去控制AFE9624板上高压模拟开关HV20220。经过AFE9624板放大控制的信号,再通过转接线JP5、JP6、JP7送到工装板上12个高压开关U12~U20上(在图3中,只给出了U18~U20),最后通过双刀双掷开关S2(此时应该拨到发射位置),接在J3端的示波器就能看到需要的合成波形。U12~U20在微处理器AT89S52的控制下,给出SDATA3, SCLK3, SLD3,RESET3串行控制信号,达到96选1的目的。
图2 发射、接收工装设计电路中发射部分原理图
微处理器AT89S52外接3个轻触开关S3、S4、S5,S3接外中断0,用于继电器控制,上电默认选择探头1(PROBE A),按下S3,则选择探头2(PROBE B),再次按下无效(防止带电换探头)。再重新上电,才能选择探头1。S4接外中断1,上电默认24个通道、96阵元是每隔2s自动检测的,若需要人工检测,则按下S4,此时,每按一次S4,则检测下一通道和阵元。S5是复位开关。根据硬件连接,设置如下:
uchar m=0;//用于96阵元的选择
uchar n=0;//默认选择探头1
uchar l=0;//用于24通道的选择
uchar k;
sbit SDATA1= P1^0; //移位数据1
sbit SCLK1= P1^1; //移位时钟1
sbit SLD1= P1^2; //移位锁定
sbit RESET1=P1^3;//复位1
sbit SDATA3= P1^4; //移位数据3
sbit SCLK3= P1^5; //移位时钟3
sbit SLD3= P1^6; //移位锁定
sbit RESET3=P1^7;//复位3
sbit SDATA2= P0^0; //移位数据2
sbit SCLK2= P0^1; //移位时钟2
sbit SLD2= P0^2; //移位锁定
sbit RESET2=P0^3;//复位2
sbit SRELAY=P0^4;//探头继电器选择
定时器自动检测子程序
void serves_timer2() interrupt 5 using 0
{
EA=0;
TF2=0;
k=k+1;
if(k==40)//2秒
{ k=0;
m=m+1;
l=l+1;
if( m>96) m=1;
if (l>24) l=1;
DELAY1s( );
for (j=0;j<8;j++)
{
HV20220_1(l) ;
《基于单片机及CPLD的B超检测工装设计》相关文章
- › 基于单片机SPCE061A的智能温度计设计
- › 基于单片机AT89C51SND1C的MP3方案设计
- › 基于单片机和PSD设计的数制化电源
- › 基于单片机的温度记录系统
- › 基于单片机软硬件联合仿真解决方案
- › 基于单片机的现场无电源电子密码锁设计
- 在百度中搜索相关文章:基于单片机及CPLD的B超检测工装设计
- 在谷歌中搜索相关文章:基于单片机及CPLD的B超检测工装设计
- 在soso中搜索相关文章:基于单片机及CPLD的B超检测工装设计
- 在搜狗中搜索相关文章:基于单片机及CPLD的B超检测工装设计