UHF RFID标签芯片模拟射频前端设计

[09-14 00:27:59]   来源:http://www.88dzw.com  通信电路   阅读:8247

文章摘要:2.2 稳压电路 稳压电路是将整流电路输出直流电压稳定在特定电平上,为整个标签芯片提供稳定的工作电压。由于标签空间位置的不确定性,使其与读/写器的距离相应不固定,以至于标签天线接收的功率变化可达l 000倍以上。因此,需设计稳压电路,以保证标签芯片不会由于物理位置变化引起直流工作电压幅度的改变,从而增大标签芯片的工作动态范围。 稳压电路的结构如图3所示。稳压电路的基本原理是将输出电压的和芯片内部的基准电压进行比较,比较的结果通过误差放大器放大,输入到调整管的栅极,改变调整管的栅源电压,调节其输出电流来跟踪负载,从而使低压差线性稳压器的输出电压稳定。2.3 上电复位电路 射频标

UHF RFID标签芯片模拟射频前端设计,标签:电路设计,http://www.88dzw.com


2.2 稳压电路
    稳压电路是将整流电路输出直流电压稳定在特定电平上,为整个标签芯片提供稳定的工作电压。由于标签空间位置的不确定性,使其与读/写器的距离相应不固定,以至于标签天线接收的功率变化可达l 000倍以上。因此,需设计稳压电路,以保证标签芯片不会由于物理位置变化引起直流工作电压幅度的改变,从而增大标签芯片的工作动态范围。
    稳压电路的结构如图3所示。稳压电路的基本原理是将输出电压的和芯片内部的基准电压进行比较,比较的结果通过误差放大器放大,输入到调整管的栅极,改变调整管的栅源电压,调节其输出电流来跟踪负载,从而使低压差线性稳压器的输出电压稳定。


2.3 上电复位电路
    射频标签供电电源建立成功后,必须给电子标签中的数字电路提供一个启动信号来使电路处于Stand by状态,等待数据帧的开始。这个启动信号由上电复位电路提供。
    上电复位电路结构如图4所示。


    工作原理如下:随着电源电压VDD的升高,由于C1和反相器中4个长沟道PMOS的延迟作用,使得采样电路输出的低电压VB经过反相器得到的C点电压VC与电源电压VDD之间的压差大于晶体管MP10的阈值电压,且能为C2赢得足够的充电时间。当充电到电容C2上的电压VE大于整形电路第一个反相器中晶体管MN6的阈值电压时,晶体管MN6导通,输出电压VF翻转为低电平。再经过反相,在整形电路的输出端可以得到复位信号的上升沿。充电完成后,紧接着C2通过晶体管MN;放电,通常放电速度比充电速度更慢。当放电到C2上的电压小于晶体管MN6的阈值电压,晶体管MN6截止,输出电压VF翻转为高电平,此时在整形电路的输出端得到复位信号的下降沿。
2.4 解调电路
    对于超高频RFID标签芯片的ASK解调电路,通常采用包络检波方式。解调电路的框图如图5所示。按照18000-6C/B标准,电路输入信号的包络频率范围为40~160 kHz,脉宽失真小于10%。包络检波器由一级Dickson电路和R2,C3组成的低通滤波器组成。产生的包络信号先送入比较器的负端,再通过低通滤波为比较器提供参考电压。比较器采用迟滞比较器,具有良好噪声抑制性能、高动态范围等特点。采用两级反相器目的是将输出电压进行整形,产生规则的方波信号。


   

www.88dzw.com随着RFID标签距离阅读器远近不同,输入的射频信号幅度可能在几百mV到几V之间变化,包络检波器输出的直流电平会有很大变化。在包络检波器输出端并联一个泄流电路,其作用是在输入信号过大时对后端比较电路起到泄流稳压的保护作用,从而避免后端电路工作失常。为了降低功耗,泄流电路在输入电平较小时需保持关断状态。
2.5 调制电路
    根据标准要求采用反向散射的调制方法,通过改变芯片输入阻抗来改变芯片与天线间的反射系数,从而实现ASK调制。天线阻抗与芯片输入阻抗在“0”状态下共轭匹配,而在“1”状态下存在一定失配。图6为调制电路框图,电容C1并联在天线两端,晶体管M1等效为一个开关,通过控制开关的开启,决定了电容是否接入芯片输入端,从而改变了芯片的输入阻抗,最终实现ASK调制。

上一页  [1] [2] [3]  下一页


Tag:通信电路电路设计家电维修 - 单元电路介绍 - 通信电路

《UHF RFID标签芯片模拟射频前端设计》相关文章