现代功率模块及器件应用技术
[09-13 17:03:49] 来源:http://www.88dzw.com 控制技术 阅读:8374次
文章摘要:1.3.1 功率MOSFET 由上述的原理可以导出如图8(a)所示的功率MOSFET的输出特性。1.3.1.1 正向截止状态 当外加一个正的漏源电压VDS时,若栅源电压VGS小于栅源开启电压VGS(th),则在漏源之间只有一个很小的漏电流IDSS在流动。当VDS增加时,IDSS也略有增加。当VDS超过某一特定的最高允许值VDSS时,pin结(p+井区/n-漂移区/n+外延生长层)会发生锁定现象(锁定电压V(BR)DSS)。这一锁定电压在物理上大致对应了MOSFET结构中的寄生npn双极晶体管的击穿电压VCER。该npn晶体管由n源区(发射极)-p+井区(基极)-n-漂移区/n+生长
现代功率模块及器件应用技术,标签:计算机控制技术,工厂电气控制技术,http://www.88dzw.com1.3.1 功率MOSFET
由上述的原理可以导出如图8(a)所示的功率MOSFET的输出特性。
1.3.1.1 正向截止状态
当外加一个正的漏源电压VDS时,若栅源电压VGS小于栅源开启电压VGS(th),则在漏源之间只有一个很小的漏电流IDSS在流动。当VDS增加时,IDSS也略有增加。当VDS超过某一特定的最高允许值VDSS时,pin结(p+井区/n-漂移区/n+外延生长层)会发生锁定现象(锁定电压V(BR)DSS)。这一锁定电压在物理上大致对应了MOSFET结构中的寄生npn双极晶体管的击穿电压VCER。该npn晶体管由n源区(发射极)-p+井区(基极)-n-漂移区/n+生长层(集电极)构成,如见图3所示。
由集电极-基极二极管的锁定现象所引起的电流放大效应,可能会导致寄生双极晶体管的导通,从而导致MOSFET的损坏。
值得庆幸的是,基极和发射极区几乎被源极的金属化结构所短路,在两区之间仅存在着p+井区的横向电阻。
应用各种设计措施,如精细的MOSFET单元、均匀的单元布置、低阻的p+井区、优化的边缘结构以及严格统一的工艺,先进的MOSFET已经可以实现很小的单元锁定电流。这样一来,在严格遵守给定参数的情况下,寄生双极晶体管结构的导通现象基本上可以被防止。所以,对于这一类的MOSFET芯片,可以定义一个允许的锁定能量EA,分别针对单个脉冲以及周期性的负载(锁定能量由最高允许的芯片温度所限定)。
在功率模块由多个MOSFET芯片并联而成的情况下,因为不可能取得芯片间绝对的均衡,所以仅允许使用单个芯片所能够保证的EA最大值。
1.3.1.2 导通状态
在漏源电压VDS和漏极电流ID均为正的情况下,正向的导通状态可分为两个区域,如图8(a)中第一象限所示。
1)主动区域 当栅源电压仅略大于栅极开启电压时,沟道内电流的饱和作用将产生一个可观的压降(输出特性的水平线)。此时,ID由VGS所控制。
在图8(b)中,转移特性可以借助正向转移斜率gfs来描述。
gfs=dID/dVGS=ID/(VGS-VGS(th))(4)
在主动区域内,正向转移斜率随着ID和源极电压的增加而增加,并随芯片温度的增加而减小。
因为,由多个MOSFET芯片并联而成的功率模块只允许在开关状态下工作,所以,主动区域只是在开通和关断过程中被经过。
一般来说,制造商不允许此类模块在主动区域内稳定运行。原因是VGS(th)随温度的上升而下降,因此,单个芯片之间小小的制造偏差就有可能引起温升失衡。
2)电阻性区域 在开关工作状态下,如果ID仅仅由外电路所决定,就处于被称为通态的阻性区域。此时的导通特性可以用通态电阻,即漏源电压VDS和漏极电流ID之商来描述。在大信号区域内,通态电压遵守式(5)关系。
VDS(on)=RDS(on)ID(5)
RDS(on)依赖于栅源电压VGS和芯片温度。在MOSFET通常的工作温度范围内,它从25℃~125℃时大约会增加一倍。
1.3.1.3 反向运行
在反向运行时(第三象限),如果VGS小于VGS(th),则MOSFET会显示出二极管特性如图8(a)中的实线所示。这一特性由MOSFET结构中的寄生二极管所引起。集电极-基极的pn结或源漏pn结(反向二极管的双极型电流)的导通电压分别决定了MOSFET在反向时的导通特性如图9(a)所示。
上一页 [1] [2] [3] [4] [5] [6] [7] [8] 下一页
- 上一篇:三相异步电动机绕组故障分析和处理
《现代功率模块及器件应用技术》相关文章
- › 现代功率模块及器件应用技术
- 在百度中搜索相关文章:现代功率模块及器件应用技术
- 在谷歌中搜索相关文章:现代功率模块及器件应用技术
- 在soso中搜索相关文章:现代功率模块及器件应用技术
- 在搜狗中搜索相关文章:现代功率模块及器件应用技术