利用可编程展频时钟生成器来降低EMI干扰

[09-12 18:30:29]   来源:http://www.88dzw.com  EDA/PLD   阅读:8474

文章摘要:电磁干扰(EMI)是一种会通过导致意外响应或完全工作实效从而影响电气/电子设备性能的能量。EMI是由辐射电磁场或者感应电压和电流产生的。当前高速数字系统中的高时钟频率和短边率也会导致EMI问题。传导和发射EMI的一个重要产生源是连接交流电源线的电气设备,例如电脑和开关电源,以及带有电动马达的电气设备,例如冰箱、空调和电单车等。一旦电气设备的EMI传导到一个电路里,里面的线缆就会像一根天线一样,将传导EMI以RFI(无线电干扰)的形式“广播”到整个电路中。图1:时钟域里的Hershey Kiss展频时钟频率概图。EMI可能影响不大,也可能导致灾难性的故障,所以对EMI的有效控制是非常重要的。电磁

利用可编程展频时钟生成器来降低EMI干扰,标签:eda技术,eda技术实用教程,http://www.88dzw.com

  电磁干扰(EMI)是一种会通过导致意外响应或完全工作实效从而影响电气/电子设备性能的能量。

  EMI是由辐射电磁场或者感应电压和电流产生的。当前高速数字系统中的高时钟频率和短边率也会导致EMI问题。

  传导和发射EMI的一个重要产生源是连接交流电源线的电气设备,例如电脑和开关电源,以及带有电动马达的电气设备,例如冰箱、空调和电单车等。

  一旦电气设备的EMI传导到一个电路里,里面的线缆就会像一根天线一样,将传导EMI以RFI(无线电干扰)的形式“广播”到整个电路中。


  图1:时钟域里的Hershey Kiss展频时钟频率概图。

  EMI可能影响不大,也可能导致灾难性的故障,所以对EMI的有效控制是非常重要的。电磁兼容性(EMC)是指系统能在指定环境下运行而不会传导或发射过量电池干扰的能力。

  EMI标准和相关成本

  EMC标准的宗旨是为了确保电子设备不会影响其它电子设备的运行甚至导致设备的故障。

  各国针对“电视、广播、便携式娱乐设备、电子游戏和互联网设备”等消费电子设备的EMI屏蔽功能的要求各有不同。

  目前为止已经有各种各样的组织发布了EMI规范。在美国,FCC发布了针对A?级和B级电子设备的第15部分J章规范。A?级和A层规范针对的是工业设备,而B级和B层规范则适用于消费电子产品。EMI规则减少了电子设备之间的干扰,解决了健康和安全方面的问题。


  图2:频率域里的展频时钟频率概图。

  如何控制EMI,一般要考虑以下几个因素:

  1) PCB设计-“灵敏元件、电源和地面层的隔离”

  2) 电路电流-“EMI辐射会随电流增大而增加”

  3) 频率,包括回转率-“EMI辐射会导致频率升高”

  4) 带宽

  5) 电路回路区域-“保持在最小”

  6) 屏蔽/过滤-“结合合理的设计、过滤、屏蔽和其它技巧,来以最低成本的方法将EMI控制在所需等级”

  7) 展频时钟-“合适的展频数量和调制频率”

  8) 抖动应用系统中时钟的中心频率,以便将辐射能量扩展到多个频段,而不是让所有能量辐射到一个频率。

  控制和降低EMI的方法

  控制和降低EMI有两个基本方法:抑制和吸收。最常用的降噪方法包括合理的设备电路设计、屏蔽、接地、过滤、隔离、分隔和定向、电路阻抗级控制、线缆设计和噪音消除等。

  这些方法要求使用无源和有源元件,例如滤波器、扼流器、铁氧体磁珠、箔片和??件,并结合PCB设计规则和展频时钟生成器(SSCG)。


  图3:Hershey Kiss展频概图的优势。

  在源头处解决EMI问题

  EMC设计的一个基本原则是在PCB的源头处减弱EMI。展频法是指有意将特别带宽中产生的辐射能量扩展到频率域,产生一个带宽更大的信号。展品时钟生成器(SSCG)就可以执行这一功能。

  在选择展频时钟来减弱消费电子产品的EMI时,开发人员必须确保以下几点:

  1) 系统必须通过EMI型式测试。良好的频率概图和调制频率是最重要的。高质量的Hershey Kiss频率概图在降低EMI上是性能最好的;与之相比,三角频率概图需要更大的扩展量才能将EMI降低到同样等级(见图1至图3)。调制频率越高,就能将EMI降到更低的程度(如图4)。

  2)即便展频有副作用,也要保持系统性能。首先,PLL必须运行于一个理想状态,例如较高的PFD和VCO频率和适当的带宽等等。第二,频率扩展量必须尽可能小,以便保持较高的系统时序余度和较低的周期间抖动。频率扩展量更小,系统的平均频率就不会降低太多,因而系统的运行速度也就不会那么慢。

[1] [2]  下一页


Tag:EDA/PLDeda技术,eda技术实用教程EDA/PLD

《利用可编程展频时钟生成器来降低EMI干扰》相关文章

分类导航
最新更新
热门排行