模拟电路网络课件 第三十五节:负反馈放大电路的稳定问题

[09-12 12:21:08]   来源:http://www.88dzw.com  电路基础   阅读:8747

文章摘要: 的选择,使得修改后的幅频特性曲线上以–20dB/十倍频程斜率下降的这一段曲线与横轴的交点刚好在fH3处,此处的 ,如图2(d)中实线②所示,此时的( )趋于–135°。所以加入RC滞后补偿的负反馈放大电路一定不会产生自激振荡。 图2(d)的虚线①是采用电容滞后补偿的幅频特性,很显然,RC滞后补偿后的上限频率向右移了,说明带宽增加了。 前两种滞后补偿电路中所需电容、电阻都较大,在集成电路中难以实现。通常可以利用密勒效应,将补偿电容等元件跨接于放大电路中,如图3(a)、(b)所示,这样用较小的电容(几皮法~几十皮法)同样可以获得满意的补偿效果。(a)(b)图3上一页 [1] [2] [3]

模拟电路网络课件 第三十五节:负反馈放大电路的稳定问题,标签:电子电路基础,模拟电路基础,http://www.88dzw.com
的选择,使得修改后的幅频特性曲线上以–20dB/十倍频程斜率下降的这一段曲线与横轴的交点刚好在fH3处,此处的 ,如图2(d)中实线②所示,此时的( )趋于–135°。所以加入RC滞后补偿的负反馈放大电路一定不会产生自激振荡。

图2(d)的虚线①是采用电容滞后补偿的幅频特性,很显然,RC滞后补偿后的上限频率向右移了,说明带宽增加了。

前两种滞后补偿电路中所需电容、电阻都较大,在集成电路中难以实现。通常可以利用密勒效应,将补偿电容等元件跨接于放大电路中,如图3(a)、(b)所示,这样用较小的电容(几皮法~几十皮法)同样可以获得满意的补偿效果。

(a)

(b)

图3

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]  下一页


Tag:电路基础电子电路基础,模拟电路基础电路基础