MAX6625型温度传感器的原理及应用
[09-12 18:38:29] 来源:http://www.88dzw.com 传感技术 阅读:8135次
文章摘要: (2)温度寄存器 MAX6625温度寄存器的长度是16位。存放最新的温度转换数据,D15为符号位。D14~D7为有效数据.D6~DO位为0。温度寄存器中的数据是摄氏温度的补码。1LSB表示O.5℃。 (3)高温,低温寄存器 MAX6625高温,低温寄存器的长度是16位,其中9位有效数据。不用的位填0。数据格式与温度寄存器相同。 (4)配置寄存器 配置寄存器是8位的读/写寄存器,其数据格式和作用如表2所示。其中D7、D6、D5位为000。D4、D3位为故障排队深度设置位,当D4、D3=00时,故障排队深度为l:当D4、D3=01时,故障排队深度为2:当D4、
MAX6625型温度传感器的原理及应用,标签:传感技术知识,传感器与检测技术,http://www.88dzw.com
(2)温度寄存器
MAX6625温度寄存器的长度是16位。存放最新的温度转换数据,D15为符号位。D14~D7为有效数据.D6~DO位为0。温度寄存器中的数据是摄氏温度的补码。1LSB表示O.5℃。
(3)高温,低温寄存器
MAX6625高温,低温寄存器的长度是16位,其中9位有效数据。不用的位填0。数据格式与温度寄存器相同。
(4)配置寄存器
配置寄存器是8位的读/写寄存器,其数据格式和作用如表2所示。其中D7、D6、D5位为000。D4、D3位为故障排队深度设置位,当D4、D3=00时,故障排队深度为l:当D4、D3=01时,故障排队深度为2:当D4、D3=10时。故障排队深度为4;当D4、D3=ll时。故障排队深度为6。D2为OT告警极性选择位。当D2=0时,低电平有效;当D2=1时,高电平有效。D1为比较和中断模式选择位,当D1=0时为比较模式:当DI=I时中断模式。DO为掉电模式控制位。当D0=0时为正常工作;当D0=I时为掉电模式。
3.2.2 OT告警模式与极性
配置寄存器中的D1数据位用来设置OT端的告警模式。当Dl=0时为比较模式;当D1=1时为中断模式。在比较模式下,当连续转换超出高温寄存器中的值(THIGH)的数目等于故障排队深度时.OT告警。当连续转换低于低温寄存器中的值(TLOW)的数目等于故障排队值时,OT告警清除。例如:THIGH设置为+100℃,其TLOW的设置为+80℃,故障排队深度设置为4,直到4个连续转换超出+100℃时,OT才告警。当4个连续转换都低于+80℃时,OT将退出告警。在中断模式中,MAX6625的高温点或低温点告警是基于前一个温度告警。OT端有低温告警也有高温告警,确定0T端告警依赖于某一条件。假设上电后故障告警被清除,MAX6625出现一个高温点告警。在高温点告警之后,MAX6625又出现一个低温点告警。在低温点告警之后,MAX6625出现一个高温点告警.高温点或低温点告警按一定的节拍交替。一旦任意一个故障发生,它激活的告警是不确定的,直到读温度寄存器的操作之后才可断定。然后对应每一个故障告警。同样,任何一个告警的激活以故障排队深度为条件。图3表示OT端在告警极性为低电平时的二种告警模式示意图。在OT告警时,为防止干扰引起的错误告警.MAX6625内部设有故障排队深度计数器,在高温或低温告警出现连续次数等于编程设置的故障排队深度数时才触发告警。图3中的故障深度为4。
3.2.3 写配置寄存器、高温寄存器和低温寄存器
主控制器向MAX6625配置寄存器写数据的过程是先写MAX6625地址,再写配置寄存器地址到指针寄存器.然后写配置寄存器数据,其时序如图4所示。高,低温寄存器的写时序与配置寄存器的写时序基本相同.但注意高,低温寄存器是16位数据格式。
《MAX6625型温度传感器的原理及应用》相关文章
- › 芯片引脚及主要特性MAX690等16位微控制器
- › MAX624的典型工作电路图
- › MAX684电荷泵驱动白光LED电路图
- › 温度窗口超限告警电路MAX6502/4
- › 上、下限温度控制伴音响报叫电路MAX6502/3
- › 微机系统的电源监视集成芯片MAX690A/692A
- 在百度中搜索相关文章:MAX6625型温度传感器的原理及应用
- 在谷歌中搜索相关文章:MAX6625型温度传感器的原理及应用
- 在soso中搜索相关文章:MAX6625型温度传感器的原理及应用
- 在搜狗中搜索相关文章:MAX6625型温度传感器的原理及应用