四种射频器件设计的TCAD仿真方法比较分析
[08-09 20:40:26] 来源:http://www.88dzw.com CAD CAM 阅读:8443次
文章摘要:周期稳态解决方案。这种方法采用下列等式: 该等式描述了线性和非线性电路电流之间的关系,括号中的参数是线性部分,其余的是非线性部分的。Is是电源电流,Y是线性电路导纳矩阵(admittance matrix),V是内部节点电压矢量,Ω是对角线上的角频率矩阵,Q是频域中的电荷矢量,IG是频域中的非线性电路的电流。当线性和非线性电路达到平衡时,这种解决方案就开始收敛。 利用TCAD的实现方案需要大量开发工作。尽管这一领域有了大量的研究和源于大学的程序可用,但市场上一直没有提供可靠的工具。谐波平衡是大信号RF问题采用的一种方法,通常在电路仿真工具中执行。谐波平衡是一种非线性频域稳
四种射频器件设计的TCAD仿真方法比较分析,标签:CAD教程,CAM资料,http://www.88dzw.com周期稳态解决方案。这种方法采用下列等式:
该等式描述了线性和非线性电路电流之间的关系,括号中的参数是线性部分,其余的是非线性部分的。Is是电源电流,Y是线性电路导纳矩阵(admittance
matrix),V是内部节点电压矢量,Ω是对角线上的角频率矩阵,Q是频域中的电荷矢量,IG是频域中的非线性电路的电流。当线性和非线性电路达到平衡时,这种
解决方案就开始收敛。
利用TCAD的实现方案需要大量开发工作。尽管这一领域有了大量的研究和源于大学的程序可用,但市场上一直没有提供可靠的工具。谐波平衡是大信号RF问
题采用的一种方法,通常在电路仿真工具中执行。谐波平衡是一种非线性频域稳态仿真。
线性电路组件仅在频域中进行建模,非线性组件在时域中建模,并且在每一步都转换到频域。运算法则一般将这种处理的谐波数量限制在7~11次。达到
11次的内存要求是4~8GB,还不包括器件仿真所需的内存。可以使用需要较少内存的迭代解决方案。由于资源有限,这些内容要求导致了谐波次数限制,多级放大
器的分析目前不能采用这种方法。扫描可能需要几个小时,而实际器件所需的时间可能会更长。
第三种方法是Loechelt于2000年研究的,这种方法是计算负载拉升(CLP)。在该方法中,大信号瞬态的仿真(或测量)可用于描述本征器件,并用工具将所
有集中在一起,进行电路评估。这种方法有几个优点,一旦构成用于描述本征器件的数据集,它就可以用在多个电路仿真中。当然,这种方法也有缺点,由于RF
工作台构建在CLP工具内部,因此只能用于那些在这种工具中执行的设计。
到目前为止,这些方法的问题是速度、RF工作台的功能、性能和设置时间,如表1所述。
表1:TCAD数据的大信号仿真四种方法比较。
第四种方法是从TCAD仿真数据中提取紧凑模型。该方法的主要优势在于基于仿真的模型采用相同的程序、提取方法,并能采用与基于测量的模型相同的
设计。这就允许使用已经开发出来的非常强大的RF电路仿真功能和原来的RF设计。缺点是运行TCAD需要时间,提取模型需要时间,以及采用的紧凑模型有一定限
制。这是一种重要限制,因为TCAD仿真可能包含的物理特性不能反映在紧凑模型中。这种缺陷有两种补救措施,一种是创建具有更佳物理特性的用户定义的模型
版本,另一种是采用基于表格的模型。为了让这种方法具有实用性,必须创建自动提取,实现大量器件模型的快速提取。
由于我们从图1中知道了最佳性能出现在不确定的源和负载匹配中,因此必须在整个源和负载层面进行仿真,以搜索到最高性能点。假设有60个源状态
和60个负载状态必须交替搜索,就有可能要完成300次左右的功率扫描才能确定最高性能点。
大信号TCAD仿真示例
TCAD仿真适用于使用Synopsys工具的器件。模型的提取采用从那些已仿真的数据中自动提取的方法,并对图2中显示的正向、反向Gummel、I/Vs和CV特
征进行比较。
- 上一篇:CAMCAD在SMT过程中的应用
《四种射频器件设计的TCAD仿真方法比较分析》相关文章
- › 四种射频器件设计的TCAD仿真方法比较分析
- 在百度中搜索相关文章:四种射频器件设计的TCAD仿真方法比较分析
- 在谷歌中搜索相关文章:四种射频器件设计的TCAD仿真方法比较分析
- 在soso中搜索相关文章:四种射频器件设计的TCAD仿真方法比较分析
- 在搜狗中搜索相关文章:四种射频器件设计的TCAD仿真方法比较分析