一类准循环LDPC码的快速编码方法
[09-12 17:58:01] 来源:http://www.88dzw.com 单片机学习 阅读:8885次
文章摘要:但如何得到这个近似下三角矩阵仍没有令人满意的方法,T.J.Rrichdson等人通过贪心算法重排校验矩阵过于复杂,且这样的预处理需要很长时间。尤其当码长较长时,这种编码方法不是一种理想的实现方式。2.3 准循环LDPC码及其编码方法准循环LDPC码是一类构造比较特殊且应用范围越来越广的LDPC码,其校验矩阵Hqc由一系列的m×m小循环方阵组成,这些小循环方阵可以是置换矩阵或是基于有限几何的矩阵等。由于Hqc的准循环特性,可以得到具有系统码形式和准循环特性的生成矩阵,即通过式(1)所得到的生成矩阵具有准循环特性,则只需要采用移位寄存器即可实现输入信息和生成矩阵的编码运算。针对一些特殊的准循环LD
一类准循环LDPC码的快速编码方法,标签:单片机开发,单片机原理,单片机教程,http://www.88dzw.com
![]() |
但如何得到这个近似下三角矩阵仍没有令人满意的方法,T.J.Rrichdson等人通过贪心算法重排校验矩阵过于复杂,且这样的预处理需要很长时间。尤其当码长较长时,这种编码方法不是一种理想的实现方式。
2.3 准循环LDPC码及其编码方法
准循环LDPC码是一类构造比较特殊且应用范围越来越广的LDPC码,其校验矩阵Hqc由一系列的m×m小循环方阵组成,这些小循环方阵可以是置换矩阵或是基于有限几何的矩阵等。由于Hqc的准循环特性,可以得到具有系统码形式和准循环特性的生成矩阵,即通过式(1)所得到的生成矩阵具有准循环特性,则只需要采用移位寄存器即可实现输入信息和生成矩阵的编码运算。针对一些特殊的准循环LDPC码,D.E,Hocevar等人还提出一种仅利用校验矩阵即可用移位寄存器进行快速编码的方法,其结构如图2所示。B中存储着用来和信息比特相乘的循环移位值,循环移位单元在每个时钟周期循环右移或者左移一次。从实现的低复杂度考虑,它优于基于RU算法的LDPC编码方案,但它只适用于具有准循环特性的LDPC码。
3 准循环LDPC码的快速编码方法
![]() |
对准循环LDPC的编码实现可分为如下3个步骤:
1) 计算中间变量DT=H1mT,根据H1矩阵具有准循环特性,使用循环移位寄存器实现,并对DT加以缓存。
2) 计算校验位,这一步是整个编码算法中复杂度最高也是最耗费资源的部分。
3) 获得编码后的码字C=(m,p)。
常用的编码算法因通过高斯消去法获得的H2-1既不是稀疏矩阵,又不具备明显的准循环特性,因此造成第二步运算过程中运算复杂度较高,降低了运算速度,影响了整体编码速度和效率。此时,本文针对H2列重小于4的准循环LDPC码(通常H2矩阵的列重均较小),介绍了该类码的快速编码算法,进一步简化了编码复杂度,以适当增加资源占用为代价,极大地提高了编码速度。
3.1 快速编码方法
基于FPGA平台,在对一类码长为15 360,行重为5~25,列重为2~12的准循环非正则LDPC码(其中每个子循环块的大小为32×32),按照如下步骤进行编码:
1) 第一步求DT=H1mT的运算,由于H1矩阵为准循环矩阵,只需将信息序列m以32个bit为单位按照H1矩阵中循环子矩阵的要求进行循环移位操作就可完成运算过程,用FPGA实现时只要一个时钟的时间。
2) 进行第二步运算时,依据Ibrahim N.Imam等人提出的采用舒尔分解求解大矩阵逆矩阵的算法求解H2的逆矩阵H2-1可得:若用字符a表示32×32循环矩阵块为单位矩阵,字符b表示32×32单位矩阵各行分别循环右移一位所得的矩阵,字符c表示32×32单位矩阵各行分别循环右移两位所得的矩阵,则H2-1矩阵所有元素只有a/u,b/u,c/u,(b+c)/u,(a+b)/u,(a+c)/u这6种类型,其中u=a2+ab+b2。显而易见:将公因子u提取出来以后,H2-1矩阵中的所有元素都可由a,b,c这3个符号或其加法之和组成,而二进制加法可简单地用异或门实现。这样H2-1DT的运算就可由最简单的移位寄存器和异或门构成,最后再用组合逻辑实现除以公因子u的运算,完成了准循环LDPC码的编码过程。整个编码算法的数据流程如图3所示。
![]() |
- 上一篇:智能流量积算控制仪
《一类准循环LDPC码的快速编码方法》相关文章
- › 一类准循环LDPC码的快速编码方法
- 在百度中搜索相关文章:一类准循环LDPC码的快速编码方法
- 在谷歌中搜索相关文章:一类准循环LDPC码的快速编码方法
- 在soso中搜索相关文章:一类准循环LDPC码的快速编码方法
- 在搜狗中搜索相关文章:一类准循环LDPC码的快速编码方法